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A first-passage-time �FPT� approach to accelerate kinetic Monte Carlo �KMC� simulations of metal�100�
epitaxial growth with fast edge diffusion is described. In our approach, the process of singly-bonded edge
diffusion is replaced by a calculation of the first-passage time for an edge diffuser to be absorbed either by
corner rounding or kink attachment, while the remaining activated processes are treated with regular KMC. To
calculate the FPT two different methods were used. In the first more computationally efficient method, the
mean FPT was calculated using an analytical expression, which takes into account the difference between the
hopping rate for an atom along the edge and at a corner site. In the second method, the full FPT distribution
is numerically calculated based on the eigenvectors and eigenvalues of the corresponding transition matrix. As
a test of this approach we have studied three different models of multilayer growth, including two irreversible
growth models as well as an effective-medium theory model of Cu/Cu�100� growth. By taking into account the
interactions of edge diffusers with other atoms we have obtained very good agreement using both methods
between our FPT KMC and regular KMC simulations. In addition, we find that our FPT approach can lead to
a significant speed-up compared to regular KMC simulations.
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I. INTRODUCTION

Kinetic Monte Carlo �KMC� is an extremely efficient
method1–6 to carry out nonequilibrium simulations of dy-
namical processes when the relevant rates are known. As a
result, the KMC method has been successfully used to carry
out simulations of a wide variety of dynamical processes
over experimentally relevant time and length scales. How-
ever, in some cases, such as when the relevant processes
have a wide range of activation energies, much of the simu-
lation time can be “wasted” on low-barrier repetitive events.
As a result, in these cases direct KMC simulations may not
be sufficient to reach the time scales of interest.

A variety of approximate approaches to dealing with this
“time-scale” problem have been suggested, including the
level-set method7 and other multiscale approaches.8–11 How-
ever, another approach is the use of first-passage-time �FPT�
algorithms. In this approach, one avoids simulating the nu-
merous diffusive hops of atoms, and instead replaces them
with the first-passage time to make a transition from one
“localized basin” to another.12,13 For example, the FPT
method has been used in simulations of annihilating con-
tinuum random walkers in two and three dimensions,14 in
Monte Carlo simulations of single-walker propagation,15,16

as well as to describe dislocation kink nucleation17,18 and
vacancy diffusion in alloys.19 More recently it has also been
demonstrated to be applicable to simulations of radiation
damage20 and vacancy-As cluster dissolution in Si.21 A
slightly different method has also been used to study irre-
versible submonolayer growth in one-dimensional �1D� ex-
tended and two-dimensional �2D� point-island models.22,23

However, perhaps because of their complexity, FPT tech-
niques have not been previously used to carry out simula-
tions of multilayer epitaxial growth.

Here, we develop and apply a FPT method to accelerate
KMC simulations of multilayer epitaxial growth. We note
that one of the primary motivations of this work was the

observation that, due to the extremely low barrier for edge
diffusion in Cu/Cu�100� growth, a great deal of computation
time is wasted on repetitive edge-diffusion events even at
relatively low temperatures. Accordingly, we have used our
method to carry out simulations of a variety of models of
epitaxial growth with fast edge-diffusion and a significant
barrier for corner rounding. These include a model of Cu/
Cu�100� growth with activation barriers based on effective-
medium theory �EMT� as well as simpler irreversible growth
models including a “generic” model of irreversible fcc�100�
growth and a solid-on-solid �SOS� model.

In our simulations, the detailed computation of �one-
bond� edge diffusion is replaced by a calculation of the first-
passage time for an edge diffuser to be “absorbed,” either by
attaching to another atom near the edge, or by corner round-
ing. However, all other KMC events such as deposition,
monomer diffusion and detachment are treated using regular
KMC. For comparison, we have carried out simulations us-
ing both the mean first-passage time �MFPT� as well as the
full FPT distribution. In particular, an analytical expression
for the MFPT was obtained by combining known expres-
sions for the escape probabilities and mean first-passage-
times of a 1D random walker with analytical corrections due
to the difference in hopping rate near a corner and along an
edge. In contrast, in the case of our simulations using the full
FPT distribution, the FPT was numerically obtained by find-
ing the eigenvectors and eigenvalues of the corresponding
transition matrix.

Since an edge diffuser can interact with other atoms such
as another edge diffuser or a monomer approaching a step,
we have also included these interactions in our simulations.
While the inclusion of such interactions requires significant
overhead, using our FPT method we have been able to
achieve a significant speed up in simulations of multilayer
epitaxial growth. In addition, we find that there is excellent
agreement between our FPT KMC simulations and regular
KMC simulations. For completeness, we have also derived
explicit expressions for the conditional MFPT.
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This paper is organized as follows. In Sec. II, we describe
the models used in our simulations. These include an EMT
model of Cu/Cu�100� growth as well as two irreversible
growth models—a generic model of fcc �100� growth and a
SOS model. In Sec. III we describe our FPT approach in
detail and also provide the corresponding analytical expres-
sions for the mean first-passage time and absorption prob-
abilities. We also discuss the interactions between an edge
diffuser and other atoms as well as the numerical calculation
of the FPT distribution. A comparison between simulation
results obtained using FPT KMC and regular KMC is then
presented in Sec. IV, while a summary of our results is pre-
sented in Sec. V. Finally, in Appendix A we derive the cor-
rections to the mean FPT used in Secs. III and IV corre-
sponding to the number of times a diffusing particle hits the
boundaries before it is absorbed. Explicit expressions for the
conditional FPT are also derived in Appendix B.

II. MODEL

In order to test our FPT KMC method, we have applied it
to an EMT model of Cu/Cu�100� growth with fast edge dif-
fusion, which also takes into account the fcc crystalline ge-
ometry. We note that this model has previously been used24,25

to obtain excellent quantitative agreement with the experi-
mental results of Ernst et al.26 for Cu/Cu�100� multilayer
growth at 160 and 200 K. More recently it has also been
used27 to explain experimental results for Cu/Cu�100�
growth obtained by Botez et al.28

In this model, the energy barriers for intralayer diffusion
correspond to a parameterization of EMT barriers calculated
by Jacobsen.29 In particular, as shown in Fig. 1, in the EMT
model the energy barriers for hopping of an adatom on a flat
terrace are determined by its interactions with the five neigh-
boring atoms labeled A, B1, B2, C1, and C2. In particular, if
an adatom �filled circle� has a lateral bond with neighboring
site i �where i=A, B1, B2, C1, and C2�, then the occupation
number Ni for that site is 1 and otherwise it is zero. The
corresponding energy barrier Eb may then be calculated us-
ing the expression,29

Eb =
Ea

2
+

Ea

2
���NA,1�

+ ��NC1
,0���NC2

,0� �1 + ��NB1
,1���NB2

,1��� , �1�

where Ea=0.425 eV is the activation energy for monomer

diffusion. We note that this expression implies the existence
of four possible different values for the intralayer diffusion
barrier: Ea /2 for atoms without an A neighbor but with one
or both of C1, C2, Ea for atoms with no neighbors, and also
for atoms with an A neighbor and one or both of C1, C2,
3Ea /2 for atoms with an A neighbor and no “B” or “C”
neighbors, and 2Ea for atoms with an A neighbor and both
“B” neighbors and no “C” neighbors.

One of the consequences of Eq. �1� is the existence of
very “fast” edge diffusion �see Fig. 2� with a barrier �Ea /2�
which is significantly smaller than that for monomer diffu-
sion. Another consequence is that dimer diffusion �via rep-
etition� is as fast as monomer diffusion. Once the activation
barrier is obtained, the rate for a given move is given by D
=D0e−Eb/kBT where D0=3�1011 s−1. We note that this value
was determined by comparing the calculated antiphase dif-
fraction factor at a coverage of 0.3 monolayer �ML� at T
=213 K and deposition rate F=0.1 ML /min with the corre-
sponding experimental results of Swan et al.30 In all of our
simulations a deposition rate F=1 /120 ML /s—the same as
in the multilayer Cu/Cu�100� growth experiments of Ernst et
al.26—was assumed, while the initial condition corresponded
to a flat substrate.

In order to simulate multilayer growth, the model de-
scribed by Eq. �1� has been modified in two ways.24 First, to
take into account the Ehrlich-Schwoebel �ES� barrier to in-
terlayer diffusion,31–33 for all interlayer diffusion processes
an additional barrier of 0.02 eV is added to the value Eb
given by Eq. �1�. We note that this should be considered to
be an effective ES barrier, since both EMT calculations34 and
density-functional theory �DFT� calculations35 indicate that
the ES barrier for interlayer diffusion at a close-packed step
edge is significantly higher than at an open step edge. The
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FIG. 1. Diagram showing neighboring sites affecting the energy
barrier for intralayer diffusion of a central atom �shaded circle� used
in EMT model of Cu/Cu�100� growth �see Eq. �1��.
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FIG. 2. Diagram showing some important intralayer moves in
EMT Cu�100� model along with corresponding activation barriers.
�a� monomer diffusion, �b� single-bond edge diffusion and detach-
ment, �c� two-bond edge diffusion, �d� monomer attachment at a
step-edge, �e� corner-rounding �Ec=0.35 eV�, and �f� kink detach-
ment along an edge.
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second modification involves the barrier for corner rounding
�see Fig. 2�e��. Since Eq. �1� implies that the barrier for an
adatom at a corner along a step edge of an island to detach
along the edge is given by Ea while the barrier to “reattach”
is very small �Ea /2�, this implies an effective corner-
rounding barrier of 0.425 eV. However, in Ref. 24 it was
found to be necessary to assume a smaller effective corner-
rounding barrier �e.g., Ec=0.35 eV� in order to explain the
relatively large value of the growth exponent � ���1 /2�
found in the experiments of Ernst et al.26 at 200 K. Accord-
ingly, in our simulations, this smaller barrier was used. We
note that in our model this enhanced corner-rounding move
is only allowed to occur for the case of in-plane motion, i.e.,
no combined enhanced corner-rounding and interlayer diffu-
sion moves are included in our simulations. Finally, we note
that in all the results presented here the corner-rounding
move was suppressed for dimers and trimers since this leads
to enhanced dimer and trimer diffusion.

As in previous simulations of metal�100� growth, also in-
cluded in our model is downward funneling �DF�,36 for at-
oms deposited at nonfourfold hollow sites. In KMC simula-
tions with the usual DF and no short-range attraction, atoms
are assumed to be deposited only at the underlying fcc�100�
lattice sites, each of which corresponds to a “capture zone”
for deposition.37,38 In particular, if a selected deposition site
is a fourfold hollow site, then the deposited atom remains
where it is immediately after deposition. However, if one or
more of the fourfold hollow “support” atoms is missing, then
the atom “cascades” randomly to one of the missing support
sites. This process is repeated until a fourfold hollow site is
found. As in Ref. 24, in the simulations presented here, the
deposition process is similar, but with a small modification to
take into account the effects of uphill funneling due to short-
range �SR� attraction as determined from molecular dynam-
ics simulations.25 In particular, if an atom lands at a site
which is not a fourfold hollow site but for which one or more
of the missing support sites are themselves fourfold hollow
sites, then one of these fourfold hollow sites is randomly
selected. Otherwise, the deposition process is the same as for
DF.

Figure 2 shows some of the important intralayer diffusion
moves in our EMT model, including monomer diffusion
�Fig. 2�a��, singly-bonded edge diffusion with rate De
=D0e−Ea/2kBT �Fig. 2�b��, double-bond edge diffusion �Fig.
2�c��, corner rounding with rate Dc=D0e−Ec/kBT �Fig. 2�e��,
kink detachment �Fig. 2�f��, and kink reattachment �Fig.
2�d��. As can be seen, the barriers for singly-bonded edge
diffusion, doubly-bonded edge diffusion and kink reattach-
ment are very low �e.g., Ea /2=0.2125 eV� while the barrier
for kink detachment along an edge �see Fig. 2�f�� is the same
as for monomer diffusion. Accordingly, we expect that both
singly-bonded and doubly-bonded edge diffusion will lead to
fast repetitive events which can significantly slow down
regular KMC simulations. However, because it turns out that
two-bond edge diffusion has almost no effect on either the
surface roughness or the surface morphology, and also be-
cause the focus here is on applying the FPT method to ac-
celerate single-bond edge diffusion, to save computational
time the rate of two-bond edge diffusion has been reduced by
a factor of 10 in all of our EMT model simulations. Figure 3

shows all the possible different absorption pathways for a
singly bonded edge-diffusing atom in our EMT model along
with the corresponding barriers. In addition to �1� kink at-
tachment and �2� corner rounding, these include detachment
perpendicular to an edge �3� with or �4� without interlayer
diffusion, detachment parallel to an edge �5� with and �6�
without interlayer diffusion, and �7� edge diffusion over a
step edge. We note that to satisfy detailed balance the reverse
barriers for the interlayer diffusion processes 3, 5, and 7
shown in Fig. 3 are all assumed to be equal to 3Ea /2+EES.

In addition to the Cu/Cu�100� growth simulations carried
out using the EMT model described above, we have also
carried FPT KMC simulations of two simpler irreversible
growth models. These include a generic fcc model with DF
and irreversible island formation �no detachment� as well as
an even simpler solid-on-solid model which is similar to the
generic fcc model but which does not take into account the
fcc geometry. In order to mimic the effects of DF, in the SOS
model any atom deposited at a step edge was assumed to
“funnel” down randomly to one of the lower nearest-
neighbor sites. For both of these irreversible growth models,
the deposition flux, and the rates of monomer interlayer and
intralayer diffusion, and corner diffusion were assumed to be
the same as for the EMT model.

III. APPLICATION OF FPT METHOD TO KMC

A. Mean number of hops for 1D random walker

Before discussing the application of our FPT method to
KMC simulations, we first present the relevant analytical ex-
pressions for the mean number of hops n�x� of a 1D random
walker �initially at site x� diffusing on the interval �0,L� with
partial reflection and absorption at each boundary �see Fig.
4�. Away from the boundaries the particle has an equal prob-
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FIG. 3. Pathways for edge and interlayer diffusion in EMT
Cu�100� model. Barriers for each process are as follows: �1� Ea /2,
�2� Ec, �3� 3Ea /2+EES, �4� 3Ea /2, �5� Ea+EES, �6� Ea, and �7�
Ea /2+EES.
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FIG. 4. Schematic showing 1D random walker diffusing be-
tween partially absorbing boundaries at 0 and L with absorption
probabilities �0 and �L, respectively.
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ability of moving to the right or to the left at each time step.
However, we assume that when the walker arrives at site
0�L�, it is absorbed with probability �0��L� and reflected
with probability 1−�0�1−�L�, respectively. The probability
P0�x ,L ,�0 ,�L� that a walker initially at site x will be ab-
sorbed at 0 is then given by,39,40

P0�x,L,�0,�L� =
L − x + �L

L + �0 + �L
, �2�

where �0= �1−�0� /�0 and �L= �1−�L� /�L, while the prob-
ability that the walker will be absorbed at site L is given by
PL�x ,L ,�0 ,�L�=1− P0�x ,L ,�0 ,�L�. In addition, the average
number of hops n�x� before a walker initially at site x is
absorbed at either of the boundaries is given by,40,41

n�x� = �L�L + 2�L��x + �0�
�L + �0 + �L�

− x2	 . �3�

While we will primarily make use of Eq. �3� along with
additional corrections discussed in Secs. III B 1 and III B 2
to calculate the mean first-passage time, it is also interesting
to consider the conditional mean number of hops
n0�x��nL�x�� corresponding to the average number of hops of
a 1D random walker before a particle is absorbed at site
0�L�. We note that n0�x� and nL�x� must satisfy the condition,

n�x� = P0�x,L,�0,�L�n0�x� + PL�x,L,�0,�L�nL�x� . �4�

We also note that expressions for n0�x� and nL�x� were pre-
sented in Ref. 40. However, perhaps due to an error in the
boundary conditions, these expressions are not correct and
do not satisfy Eq. �4�. Accordingly, in Appendix B we derive
and present correct expressions for the conditional mean
number of hops n0�x� and nL�x� for a 1D random walker
diffusing between two partially absorbing boundaries.

B. Implementation of FPT approach

In our first-passage-time approach, we have replaced the
detailed motion of a singly-bonded atom diffusing along an
island edge, by a calculation of its overall first-passage time
for “absorption” at a kink site or by corner rounding. The
remaining diffusive moves in our KMC simulations, for
which the barriers are typically significantly higher than for
edge diffusion, are treated as regular KMC moves. For sim-
plicity, and also because it is computationally faster, for the
two simpler irreversible growth models �SOS model and ge-
neric fcc model� we have carried out simulations based on
the mean first-passage time, using the analytical expressions
discussed below in Secs. III B 1 and III B 2. However, for
the case of Cu/Cu�100� growth we have also carried out
simulations in which the full FPT distribution Pa�t� for ab-
sorption of an edge diffuser at time t is used. We first discuss
the analytical expressions corresponding to the mean first-
passage time.

1. Analytical calculation of mean FPT

In order to obtain an analytical expression for the mean
first-passage time we map the diffusion of an edge-atom to a
1D random walk with partially absorbing boundaries with

the appropriate values of x, L, �0, and �L. For example, for
the case shown in Fig. 5, with kink attachment and corner
rounding at the boundaries, one has x=0, L=3, �0=1 /2, and
�L=Dc / �De+Dc� where De and Dc are the rates of edge dif-
fusion and corner rounding, respectively. Since the rate for
edge hopping in each direction �De� is the same for all sites
along the edge except for the corner site, the mean first pas-
sage time ��x� for an edge diffuser at site x to escape from
the edge is given by

��x� = n�x�/�2De� + �tav�x� , �5�

where n�x� is given by Eq. �3�, 1 / �2De� is the average time
for each individual hop along the edge, and �tav�x� is a cor-
rection term, which takes into account the fact that the total
hopping rate at a corner site �De+Dc� is different from the
rate �2De� at all other edge sites. Somewhat surprisingly, this
correction turns out to be important to obtain good agree-
ment with regular KMC simulations.

2. Correction term �tav(x)

In order to calculate �tav�x�, one first needs to calculate
the average number of times an edge atom arrives at a corner
site before being absorbed. Let us denote by h�1

�x ,�2� the
number of times �excluding the last time if �1=�2� that a
walker initially at position x arrives at boundary site �2 be-
fore being absorbed at site �1 �where �1 ,�2=0 or L�. Then,
assuming that the edge atom was absorbed at boundary site
�, the corresponding correction time �t��x� to the FPT is
given by,

�t��x� = �0 h��x,0� + �L h��x,L� + ��/D�, �6a�

�� =
��

D�

−
1

2De
, �6b�

where �� corresponds to the correction time for each hop
away from a boundary at site �, D� is the rate �equal to De at
a kink and Dc at a corner� for absorption at the boundary, and
the last term in Eq. �6a� takes into account the additional
time required for the last hop over the boundary. The mean
correction time �tav�x� is then obtained by averaging over
the possibilities that the edge diffuser is absorbed at site 0
and site L and is given by,

�tav�x� = P0�x��t0�x� + PL�x��tL�x� , �7�

where P0�x� and PL�x� are given in Eq. �2� and �t0�x� and
�tL�x� are given in Eq. �6�.
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FIG. 5. Example of edge diffusion with two possible absorption
pathways: attachment to a kink with rate De, and corner rounding
with rate Dc.
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By carrying out an exact enumeration of all possible
walks �see Appendix A�, we have derived analytical expres-
sions for h0�x ,0�, h0�x ,L�, hL�x ,0�, and hL�x ,L�. In particu-
lar we find,

hL�x,0� =
�0��0 + 1�
L + �0 + �L

L − x + �L

x + �0
, �8a�

hL�x,L� = �L� L − 1 + �0

L + �0 + �L
	 . �8b�

The corresponding results for h0�x ,0� and h0�x ,L� may be
obtained by interchanging �0 and �L and replacing x with
L−x in Eqs. �8b� and �8a�, respectively.

3. Calculation of FPT distribution Pa(t)

Although computationally more demanding, the full FPT
distribution Pa�t� for absorption of an edge diffuser at time t
may be numerically calculated by considering the master

equation,12,13 for the evolution of the probability P̄i�t� that
the edge diffuser is at site i along the edge, where i
=0,1 ,2 , . . . ,L. Accordingly one may write,

dP̄

dt
= − MP̄�t� , �9�

where the L+1 by L+1 transition matrix M satisfies Mij =
−Rj→i if i� j and Mii=
k�iRi→k, and Ri→j is the rate for the
edge diffuser to hop from site i to site j. Here the sum over
k includes the absorption sites as well as the edge-diffusion
sites 0 through L. The solution is,

P̄�t� = e−Mt P̄�0� . �10�

Diagonalizing the transition matrix M one may write,

P̄�t� = V e−�t V−1P̄�0� , �11�

where M =V�V−1, �ij =	i�ij is the matrix of eigenvalues, V

is the eigenvector matrix, and P̄�0� is the initial probability
distribution of the edge diffuser. We can rewrite this as,

P̄i�t� = 

j

Vij e−	jt aj , �12�

where Vij is the ith component of the jth eigenvector and,

aj = 

k

Vjk
−1 P̄k�0� = Vj,x

−1, �13�

where x is the initial position of the edge diffuser. So the
absorption probability at time t is,

Pa�t� = 1 − 

i

P̄i�t� = 1 − 

ij

Vij Vj,x
−1 e−	jt. �14�

Picking an absorption time t with the correct distribution
then involves numerically solving the equation,

Pa�t� = 
 , �15�

where 
 is a uniform random number between 0 and 1. We
note that from Eq. �14� an expression for the mean first-
passage time � may also be obtained,

� = �
0

�

dt t
dPa�t�

dt
= 


ij

VijVj,x
−1/	 j . �16�

Thus, both the mean FPT and the FPT distribution Pa�t� may
be obtained from the eigenvectors and eigenvalues of the
transition matrix M.

We also note that for the models considered here the ma-
trix M is symmetric and, therefore, one may write V−1=VT,
which implies that Vj,x

−1=Vx,j. In addition, since only edge-
diffusion hops to nearest-neighbor sites are allowed the ma-
trix is tridiagonal. Accordingly, the matrix M may be effi-
ciently diagonalized using a method appropriate for
tridiagonal, symmetric matrices. In particular, one may write,

Ri→j = De��i,j+1 + �i,j−1� , �17�

for i , j=0,1 ,2 , . . . ,L, while R0→−1=Dkc�0� and RL→L+1
=Dkc�L� where Dkc�i�=De if site i is next to a kink site, and
Dkc�i�=Dc if site i is a corner site.

4. Interactions between edge diffuser and other atoms

While the FPT expressions above give the escape time for
an isolated edge diffuser, an edge atom can also interact with
other atoms before escaping. Examples include the interac-
tion of an edge atom with another edge atom on the same
edge, with another edge atom on a step edge two lattice units
away, and with a monomer approaching the same edge either
from above or below the step.

We first consider the interaction between an edge atom
and another edge atom on the same edge �atoms B and C in
Fig. 6�. While it is possible to use the numerical method
described in Sec. III B 3 to obtain the distribution of colli-
sion times and collision locations for two edge diffusers
along an edge, such a calculation is very computationally
demanding since it involves finding the eigenvalues and
eigenvectors of an L�L+1� by L�L+1� matrix, and also se-
lecting from L collision sites with the appropriate probability.
Therefore, in order to approximately include such an inter-
action in our simulations, for each edge diffuser we have
treated any neighboring edge diffuser as a stationary kink
site �see sites C2 and B1 in Fig. 6�. However, to take into
account the fact that the relative diffusion rate is twice the
rate of a single edge diffuser, the calculated FPT for collision
of each edge diffuser with the other is divided by a factor
of 2.

A
2

C
1

B
1

C
2

A
1

B
2

A

B C

FIG. 6. Examples of edge atoms �striped circles� and their cor-
responding absorption sites �dashed lines� including interactions
with monomers, e.g., absorption sites for atom A are A1 and A2.
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Similarly, if at time t a monomer approaches a step edge
on the lower terrace one step away from the step edge, then
the monomer may also be treated as a kink site �Fig. 6, sites
A2 and C1�. However, before doing so the edge diffuser
should first be moved, with the appropriate probability dis-

tribution P̄i�t� to one of the sites i along the edge. While it is

in principle possible to calculate P̄i�t� for all sites along the
edge, and then to use this distribution to move the edge dif-
fuser to one of the edge sites with the appropriate probability,
such a calculation is at least as computationally demanding
as the calculation of Pa�t�. In addition, since the rate of edge
diffusion is significantly higher than the monomer hopping
rate as well as the �per site� deposition rate, it is a reasonable
approximation to assume that the edge diffuser is equili-
brated along the step edge. Accordingly, in this case the edge
diffuser is first moved to a random site along the edge before
calculating the FPT to attach to the monomer. For the SOS
model this equilibration is particularly important if the
monomer arrives from the upper step. In this case the edge
diffuser is first moved to a random site along the edge before
either performing interlayer diffusion or calculating the ef-
fective DF due to knockout for a freshly deposited atom at a
step edge. We note that while the inclusion of such approxi-
mate equilibration processes only affects the surface rough-
ness very weakly, it has a strong effect on the surface mor-
phology, and is therefore important to include especially in
SOS models.

Finally, we consider the interaction between two edge dif-
fusers, which are on edges which are two steps away as
shown in Fig. 7. In this case, regular KMC is used when both
edge atoms are in the common region �in between I and II� as
shown in Fig. 7. Including this process is particularly impor-
tant in order to properly include island coalescence in our
simulations. Otherwise, FPT KMC is used with sites I and II
treated as kink sites.

In order to take these interactions into account we associ-
ate each lattice site with a list of edge diffusers it can affect.
Accordingly, every time there is a change at the site all af-
fected edge diffusers are updated. We note that all sites one
step away from the edge as well as both absorption sites are
linked with the edge diffuser in this way. In the case of the
EMT model, all potential edge diffuser support sites one step
away from the edge �see Fig. 8� are also linked with the edge
diffusing atom in order to properly take into account the
effects of steps on absorption.

5. Time-based KMC

In order to implement our FPT approach we have used a
time-based rather than a rate-based method. Thus, in addition
to maintaining a list of first-passage times for all edge dif-
fusers, after each event we also update the total rate for all
regular KMC moves RKMC=
niRi �where Ri is the rate for a
process of type i, and ni is the number of processes of this
type�. This rate is then used to calculate the time before the
next regular KMC event given by �tKMC=−ln�
� /RKMC,
where 
 is a uniform random number between 0 and 1. This
time is then compared with the time of the earliest FPT event
�selected using another binary tree�. If the event type corre-
sponds to a regular KMC event, then the specific event is
selected randomly from one of the possible events of this
type. �We note that for the Cu/Cu�100� growth model there
are 8 possible barriers and/or event types corresponding to a
binary tree of order 3.� After each event the lists containing
the number and location of all regular KMC processes of
each type are updated along with any changes to the neigh-
borhood �e.g., absorption sites, length of the edge, and type
of boundaries� of all FPT atoms. We note that in the case of
an FPT move, Eq. �2� is used to determine to which absorp-
tion site the edge diffuser will escape.

IV. RESULTS

We first consider the application of our FPT KMC method
to the irreversible fcc�100� and SOS growth models de-
scribed in Sec. II We note that for these models all of the
FPT results shown are based on the MFPT calculated using
Eq. �5� rather than the full FPT distribution. In all of our
simulations, we start with a flat substrate �system size L
=256� and atoms are deposited randomly at an average depo-
sition rate F=1 /120 ML /s, while the rates for monomer in-
terlayer and intralayer diffusion, and corner rounding were
assumed to be the same as for the EMT model at the corre-
sponding temperature. However, since these simulations
were considerably slower than those for the corresponding
EMT Cu/Cu�100� growth model, a somewhat lower edge-
diffusion rate was assumed for the irreversible growth model
simulations. In particular, in both the regular KMC and
MFPT KMC simulations the edge-diffusion rate in the SOS
model �fcc�100� model� simulations was reduced by a factor
of 10 �100� compared to the EMT Cu/Cu�100� growth model
�see Table I�. All of our results were averaged over 10 runs.

KMC

I

IIA

B

FIG. 7. Two interacting step edges. Edge atoms between sites I
and II are treated with regular KMC, while edge atoms outside this
region �e.g., atom A� are treated using FPT KMC.

x
x x x x x

x

x x
x x x x x

x

xxxx

xx

FIG. 8. Schematic showing possible interaction sites �marked
with x� associated with edge diffuser �striped circle�.
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Figure 9 shows a comparison between regular KMC and
MFPT KMC results for the surface roughness or “width”
�e.g., rms height fluctuation� as a function of film thickness
for both models at T=200 and 250 K. As can be seen, there
is excellent agreement between the KMC and MFPT simu-
lation results. Similar good agreement �not shown� has also
been obtained for the lateral correlation length rc �corre-
sponding to the first zero crossing of the circularly averaged
height-height correlation function� as well as for the circu-
larly averaged height-height correlation function G�r�. A
comparison between the corresponding morphologies ob-
tained from KMC and MFPT simulations at T=200 K for
both models is also shown in Fig. 10. As can be seen, there is
also good agreement between the morphology obtained from
our MFPT simulations and that obtained in regular KMC
simulations.

We now consider the speed-up of our MFPT simulations
compared to regular KMC simulations. As can be seen in
Table II, for the fcc model the MFPT simulations at 200 K

are approximately 63 times faster than the corresponding
KMC simulations. In addition, since the rate of edge diffu-
sion increases with temperature, at 250 K the speed-up factor
�100� is even larger. However, partly due to the fact that the
rate of corner diffusion also increases with increasing tem-
perature, the increase in the speed-up factor from 200 to 250
K is not as large as the increase in the rate of edge diffusion.

Similar results for the SOS model are also shown in Table
II. However, perhaps in part because of the simplicity of the
SOS model �which leads to reduced overhead for regular
KMC� the speed-up factors for the SOS model are not quite
as large as for the generic fcc growth model. In particular, for
the SOS model the MFPT KMC simulations at 200 K �250
K� are approximately 36 �76� times faster than the corre-
sponding regular KMC simulations. However, the speed up
increases significantly with increasing temperature.

We now consider the application of our FPT KMC
method to simulations of Cu/Cu�100� growth using our EMT
model. In this case we have carried out both FPT KMC
simulations using the full FPT distribution �see Eq. �15�� as
well as MFPT simulations using the mean FPT calculated

TABLE I. Parameters used for irreversible growth model simu-
lations. Here D is the total rate for monomer diffusion, while De,
Dc, and DES are the rates for edge diffusion, corner diffusion, and
interlayer diffusion, respectively.

Temperature
�K� D /F De /F Dc /F DES /F

fcc�100� 200 7.0�102 1.6�106 5.5�104 2.2�102

fcc�100� 250 9.7�104 1.9�107 3.2�106 3.9�104

SOS 200 7.0�102 1.6�107 5.5�104 2.2�102

SOS 250 9.7�104 1.9�108 3.2�106 3.9�104

TABLE II. Speed-up factors �compared to regular KMC� ob-
tained in MFPT �FPT distribution� KMC simulations of multilayer
growth at T=200 and 250 K using different models with Cu
parameters.

Model 200 K 250 K

fcc 63 100

SOS 36 76

EMT 42 �28� 31 �22�
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FIG. 9. Comparison of regular KMC results �symbols� and
MFPT KMC results �lines� for surface roughness obtained from
simulations of irreversible growth models at 200 and 250 K. �error
bars for 200 K are of the size of circles�.

(c) KMC (SOS)

(b) FPT (fcc)

(d) FPT (SOS)

(a) KMC (fcc)

FIG. 10. Comparison of surface morphology �L=256� at T
=200 K obtained in �a� regular KMC and �b� MFPT KMC simula-
tions of generic fcc model at coverage of 20 ML and �c� regular
KMC and �d� MFPT KMC simulations of SOS model at 30 ML.
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using Eq. �5�. We first consider growth at 200 K, since at this
temperature there is negligible one-bond and two-bond de-
tachment. Representative error bars are shown in Fig. 11 for
the regular KMC simulations while all results are averaged
over 10 runs. As can be seen in Fig. 11�a�, there is very good
agreement between the MFPT KMC results �filled symbols�
and regular KMC results �open circles, line� for the surface
roughness. Similarly good agreement is also shown between
the results obtained using the full FPT distribution and the
regular KMC results. As shown in Fig. 11�b�, similarly good

agreement has also been obtained for the lateral correlation
length. As indicated by Figs. 12�a� and 12�b�, there is also
very good agreement between the morphology obtained us-
ing FPT KMC and that obtained using regular KMC.

We note that at 200 K the regular KMC simulations are
quite time-consuming and take approximately 4 days for
each 60 ML run. However, our FPT simulations are signifi-
cantly faster. In particular, as shown in Table II using the
MFPT we obtain a speed up of approximately 42 over regu-
lar KMC simulations, while a smaller speed-up factor is ob-
tained in our simulations using the full FPT distribution, due
to the additional overhead required in this case.42 We note
that in this case we have saved the eigenvalues and eigen-
vectors for each value of the initial position x and edge-
length L so that they do not need to be recalculated if the
same configuration is encountered. For comparison we have
also carried out MFPT simulations at 200 K with two-bond
edge diffusion completely suppressed. While this has little
effect on the surface morphology, in this case the speed up
due to the use of the FPT is even larger �approximately 65�.

Finally, we consider our EMT model of Cu/Cu�100�
growth at 250 K. As can be seen in Fig. 13 there is very good
agreement between our FPT KMC simulations and regular
KMC simulations. In addition, our FPT simulations are again
significantly faster than regular KMC simulations. However,
due to the increased rates of double-bond edge diffusion and
corner rounding at this temperature, in this case the speed-up
factors for MFPT and FPT distribution simulations �see
Table II� are not quite as large as at 200 K. As an additional
test, we have also carried out MFPT simulations of Cu/
Cu�100� growth at this temperature using a slightly higher
value for the barrier for corner rounding �e.g., using the EMT
value Ec=0.425 eV for corner detachment rather than en-
hanced corner rounding�. In this case, due to the higher bar-
rier for corner rounding the speed-up factor increased from
approximately 30 to 43.
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FIG. 11. Comparison of regular KMC �open circles� and MFPT
KMC �open diamonds� and FPT distribution �filled diamonds� re-
sults for surface roughness and lateral correlation length �rc� ob-
tained in simulations using EMT model of Cu/Cu�100� growth at
200 K.

(a) KMC (b) FPT

FIG. 12. Comparison of surface morphology �L=256� obtained
in regular �a� KMC and �b� FPT distribution KMC simulations of
EMT model of Cu/Cu�100� growth at coverage of 60 ML.
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FIG. 13. Comparison of regular KMC �open circles� and MFPT
KMC �open diamonds� and FPT distribution �filled diamonds� re-
sults for surface roughness obtained in simulations using EMT
model of Cu/Cu�100� growth at 250 K.
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V. DISCUSSION

Motivated by the observation that in KMC simulations
of growth models with fast edge diffusion, a great deal of
computer time is wasted on repetitive edge-diffusion events,
we have developed a FPT method for accelerating KMC
simulations. In our method, the detailed computation of
edge-diffusion events is replaced by a calculation of the first-
passage time for an edge diffuser to be absorbed, either by
attaching to another atom near the edge, or by corner round-
ing. However, all other KMC events such as deposition,
monomer diffusion, and detachment are treated using regular
KMC.

For comparison, we have carried out simulations using
both the MFPT as well as the full FPT distribution. In par-
ticular, an analytical expression for the MFPT �Eq. �5�� was
obtained by combining known expressions for the escape
probabilities and mean first-passage times of a 1D random
walker, with analytical corrections due to the difference in
hopping rate near a corner and along an edge. In contrast, in
our FPT simulations, the full FPT distribution Pa�t� was nu-
merically obtained by finding the eigenvectors and eigenval-
ues of the corresponding transition matrix. A first-passage
time with the correct distribution was then generated by nu-
merically solving the equation Pa�t�=
 where 
 is a uniform
random number between 0 and 1.

By using these expressions and also taking into account
the interactions between an edge diffuser and other atoms,
we have obtained excellent agreement between our FPT
KMC simulations and regular KMC simulations for a variety
of different growth models. These include an EMT model of
Cu/Cu�100� growth as well as simpler models of irreversible
growth including a generic fcc model and an SOS model. In
addition, despite the additional computational overhead re-
quired to keep track of the interactions between an edge dif-
fuser and other atoms, we have found a significant speed up
in our FPT KMC simulations compared to regular KMC
simulations. For example, in our MFPT simulations of Cu/
Cu�100� growth at 200 and 250 K, we have obtained
speed-up factors of 42 and 31, respectively. We note that the
decrease in the acceleration factor as the temperature is in-
creased from 200 to 250 K is due in part to the increase in
both the rate of corner rounding and kink detachment with
increasing temperature.

In MFPT KMC simulations of a generic fcc model with
the same parameters for monomer diffusion, edge diffusion,
corner rounding, and interlayer diffusion as in our EMT
model, we have obtained even larger speed-up factors �e.g.,
63 at 200 K and 100 at 250 K�. Similar speed-up factors have
also been obtained for the corresponding SOS model at 200
and 250 K. The larger acceleration obtained for these models
is in part due to the fact that compared to the EMT model, in
these models edge-diffusion plays an even more dominant
role. Similarly, the increase in the FPT acceleration factor
with increasing temperature is due to the increase in the rate
of edge diffusion. However, the barrier for corner rounding
also plays an important role. For example, in MFPT KMC
simulations of our EMT model at T=250 K using the EMT
value of the barrier for corner rounding �rather than en-
hanced corner rounding� the speed-up factor increased from
31 to 43.

Interestingly, our results suggest that �at least for the mod-
els studied here� the more computationally efficient MFPT
method is as accurate as using the full FPT distribution. In
addition, we found that our simulations using the full FPT
distribution �without saving the eigenvectors and eigenval-
ues� were approximately 40% slower than the MFPT simu-
lations although they were somewhat faster �see Table II�
when the eigenvectors and eigenvalues were saved. How-
ever, despite these disadvantages the numerical method to
calculate the full FPT distribution has a number of other
advantages. In particular, it can be easily applied to study
more complicated cases, such as those with longer-range in-
teractions or in which the hopping rate of an edge diffuser
depends on its position along the edge.

In addition to deriving expressions for the appropriate ab-
sorption probabilities and mean first-passage time as dis-
cussed in Sec. III B 2, we have also derived expressions for
the conditional MFPT �see Appendix B�. However, we found
that our conditional MFPT KMC simulations are several
times slower than the corresponding MFPT KMC simula-
tions, due at least in part to the more complicated expres-
sions required to calculate the conditional FPT. Accordingly,
here we have focused on FPT KMC simulations and have not
presented any conditional FPT KMC results.

We note that the inclusion of interactions between an edge
diffuser and other atoms turns out to be crucial in using our
FPT method to obtain accurate results. This includes the in-
teraction with other edge diffusers on the step edge or a
nearby step edge, and with monomers approaching the step
edge from above and below. In particular, the interaction
with another edge diffuser was included by treating the other
edge diffuser as a kink atom and dividing the FPT by a factor
of 2 to take into account the relative motion of both edge
diffusers. We have also assumed that by the time another
atom approaches a step edge on which there is already an
edge diffuser, this edge diffuser is already equilibrated. This
is done by randomly relocating the edge-diffuser along the
edge before recalculating the corresponding FPT. While this
equilibration assumption does not strongly affect the surface
roughness, it turns out to be crucial in obtaining good agree-
ment with the surface morphology observed in regular KMC
simulations.

Since the FPT method requires significant overhead, in
both our KMC and FPT KMC simulations we have taken
care to maximize the efficiency. For example, in both cases
binary trees were used to select the next event. In addition, in
both KMC and FPT KMC simulations the regular KMC
events were organized into lists of different types in order to
minimize the size of the corresponding binary tree. Never-
theless, significant additional overhead was still required in
our FPT KMC simulations to keep track of the interactions
between an edge diffuser and other atoms. If in the future a
more efficient method is devised to take these interactions
into account then this could significantly increase the
speed-up possible via FPT KMC simulations.

Since the implementation of our FPT KMC method is also
relatively complex, it is of interest to compare it with simpler
although perhaps less accurate methods. For example, one
possible method to accelerate simulations with fast repetitive
events, is to artificially reduce the rate of these events by a
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factor of R where R�1. However, while this can lead to a
speed up of up to a factor of 1 /R, care must still be taken to
ensure that detailed balance is maintained. For the models
considered here which have a relatively short range of inter-
action, this can be done by using edge reduction, i.e., reduc-
ing the rate of edge diffusion for all singly bonded edge
diffusers, which are more than one hop away from a kink or
other attachment site.

Figure 14 shows a comparison between the results of
regular KMC simulations using the EMT model at T
=200 K and KMC simulations carried out using different
edge-reduction factors ranging from R=1.0 �no reduction� to
R=0.01. Also shown for comparison are results obtained us-
ing the full FPT distribution. As can be seen, while there is
good agreement between the KMC and FPT KMC simula-
tions, the results obtained with R=0.1 and 0.01 deviate sig-
nificantly from the KMC results at large thicknesses. In ad-
dition, the FPT KMC simulations are approximately 6 times
faster than the edge-reduction simulations with R=0.1 and
are also as fast as the edge-reduction simulations with R
=0.01. Thus our FPT KMC method provides a more accurate
and efficient way to accelerate KMC simulations with fast
edge diffusion.

Finally, we discuss some possible improvements to our
FPT KMC simulations. As already noted, in the case of an
edge-diffuser interacting with an atom approaching a step
edge, we have made the approximation that the edge diffuser
is completely equilibrated by the time the interacting atom
approaches. However, using the transition matrix it is pos-
sible to exactly select the position of the edge diffuser with
the appropriate probability distribution before determining
the FPT with this interaction included. Similarly, in the case
of two edge diffusers on the same edge, we have used the

approximation of treating each one as a kink site for the
other. In this case, the corresponding L�L+1� by L�L+1�
transition matrix could also be used to calculate the first-
passage-time distribution for two edge diffusers to collide,
along with the corresponding probability distribution for the
point of collision. However, this is likely to require signifi-
cant overhead, especially for large values of L. In the future,
it would be interesting to determine to what extent the addi-
tional computational overhead associated with these more
exact calculations reduces the overall computational speed
up compared to the results presented here.
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APPENDIX A: DERIVATION OF EQ. (8)

Consider a random walk on the interval �0,L� with par-
tially absorbing boundaries �see Fig. 4�. �0 and �L are the
absorption probabilities at the boundary sites while �0= �1
−�0� /�0 and �L= �1−�L� /�L. We first consider the quantity
hL�x ,L� �see Eq. �8b�� corresponding to the number of times
�excluding the last time� the walker reaches the right bound-
ary at L before it is absorbed at the right boundary. To sim-
plify our notation we define the quantity QL�x�= PL�x ,L
−1,�0 ,1� �see Eq. �2�� corresponding to the probability that
a particle initially at x reaches site L at least once. Similarly,
QL�L−1�= PL�L−1,L−1,�0 ,1� is the probability that a par-
ticle initially at L−1 reaches site L at least once. One may
then write,

hL�x,L� =



n=1

�

nQL�x��QL�L − 1��1 − �L��n−1�L



n=1

�

QL�x��QL�L − 1��1 − �L��n−1�L

− 1.

�A1�

Here, the factor of QL�x� in each sum corresponds to the
probability that the particle reaches L the first time, while the
expression with exponent n−1 corresponds to the probability
that it is reflected from L and then returns to L, n−1 times.
The factor of �L in each sum corresponds to the probability
that it is absorbed at L the last time, while 1 is subtracted
since the last time is excluded. Using Eq. �2� one obtains,
QL�x�= PL�x ,L−1,�0 ,1�=

x+�0

L+�L
and QL�L−1�= PL�L−1,L

−1,�0 ,1�=
L−1+�0

L+�L
. Substituting and using the formula for an

infinite geometric series leads to Eq. �8b�.
Next, we consider the quantity hL�x ,0� �see Eq. �8a�� cor-

responding to the number of times the walker reaches the left
boundary at 0 before it is absorbed at the right boundary. In
this case one may write,
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FIG. 14. Dependence of surface roughness on edge-reduction
factor R obtained in regular KMC simulations of EMT model of
Cu/Cu�100� growth at 200 K.
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hL�x,0� =

Q0�x��1 − �0��1 − Q0�1��

n=1

�

n�Q0�1��1 − �0��n−1

1 − Q0�x� + Q0�x��1 − �0��1 − Q0�1��

n=1

�

�Q0�1��1 − �0��n−1

, �A2�

where Q0�x�= P0�x−1,L−1,1 ,�L� is the probability that a
walker initially at site x will reach site 0 at least once. Here,
the factor of Q0�x� in the numerator corresponds to the prob-
ability that a walker initially at site x will reach site 0 at least
once while the factors of 1−�0 correspond to the probability
that it is reflected every time. The factors of Q0�1� in the
summation correspond to the probability that the walker
reaches the left boundary after being reflected from site 0,
while the extra factor of 1−Q0�1� corresponds to the prob-
ability that after n−1 reflections the walker is absorbed at the
right boundary. The denominator is similar except for the
absence of a weighting factor of n, as well as an additional
1−Q0�x� term corresponding to the probability that the
walker does not reach the left boundary even once. Using
Eq. �2� one obtains, Q0�x�= P0�x−1,L−1,1 ,�L�=

L−x+�L

L+�L
and

Q0�1�= P0�0,L−1,1 ,�L�=
L−1+�L

L+�L
. Substituting and using the

formula for an infinite geometric series leads to Eq. �8a�.

APPENDIX B: CONDITIONAL FIRST-PASSAGE
TIMES

While we have used Eq. �3� for the unconditional mean
FPT n�x� for a random walker initially at site x to be ab-
sorbed at either boundary in our FPT KMC simulations, it is
also interesting to consider the conditional first-passage time
�CFPT� corresponding to the average number of hops before
a particle is absorbed at a specific boundary, i.e., n0�x��nL�x��
corresponding to the average number of hops before a par-
ticle is absorbed at site 0�L�. As mentioned in Sec. III A, the
CFPT expressions for a 1D random walker derived in Ref.
40 do not satisfy the probability conservation condition Eq.
�4� due to an error in the boundary conditions. Here, we
present an outline of the derivation using the correct bound-
ary conditions.

We first define the quantities m0�x�= P0�x ,L ,�0 ,�L�n0�x�
and mL�x�= PL�x ,L ,�0 ,�L�nL�x� which satisfy the recursive
relation,

1

2
m0�x + 1� − m0�x� +

1

2
m0�x − 1� = − P0�x,L,�0,�L� ,

�B1�

with boundary conditions,

m0�1� =
1

1 − �0
m0�0� − P0�0,L,�0,�L� �B2�

m0�L − 1� =
1

1 − �L
m0�L� − P0�L,L,�0,�L� . �B3�

Solving Eqs. �B1�–�B3� recursively, we get a unique expres-
sion for m0�x�. Dividing by P0�x ,L ,�0 ,�L� we obtain,

n0�x� =
1

3�L + x + �L��x�x2 − 3�L + �L�x − 1�

+
�x + �0�
��L�
�L + �o + �L� 
 , �B4�

where 
�����L+2���L2+3�L−1�+ �L+���L2+2�. Replac-
ing x by L−x in Eq. �B4� and interchanging �0 and �L an
expression for nL�x� may also be obtained,

nL�x� =
1

3�x + �0���L − x���L − x�2 − 3�L + �0��L − x� − 1�

+
�L − x + �L�
��0�

�L + �0 + �L� 
 . �B5�

We note that these expressions satisfy the probability conser-
vation condition Eq. �4�.
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